US 2008/0128182 Al

[0261] Ina preferred embodiment, the user can start a slide
and specify its chord in either of two ways. In the first way, the
user starts with the hand floating above the surface, places
some fingers on the surface possibly asynchronously, and
begins moving all of these fingers laterally. Decision diamond
656 initiates the slide mode only when significant motion is
detected in all the touching fingers. Step 658 selects the chord
from the combination of fingers touching when significant
motion is detected, regardless of touchdown synchronization.
In this case coherent initiation of motion in all the touching
fingers is sufficient to distinguish the slide from resting fin-
gers, so synchronization of touchdown is not necessary. Also,
novice users may erroneously try to start a slide by placing
and sliding only one finger on the surface, forgetting that
multiple fingers are necessary. Tolerance of asynchronous
touchdown allows them to seamlessly correct this by subse-
quently placing and sliding the rest of the fingers desired for
the chord. The slide chord will then initiate without forcing
the user to pick up all fingers and start over with synchronized
finger touchdowns.

[0262] In the second way, the user starts with multiple
fingers resting on the surface, lifts a subset of these fingers,
touches a subset back down on the surface synchronously to
select the chord, and begins moving the subset laterally to
initiate the slide. Decision diamond 656 actually initiates the
slide mode when it detects significant motion in all the fingers
of the synchronized subset. Whether the fingers which
remained resting on the surface during this sequence begin to
move does not matter since in this case the selected chord is
determined in step 658 by the combination of fingers in the
synchronized press subset, not from the set of all touching
fingers. This second way has the advantage that the user does
not have to lift the whole hand from the surface before starting
the slide, but can instead leave most of the weight of the hands
resting on the surface and only lift and press the two or three
fingers necessary to identify the most common finger chords.

[0263] To provide greater tolerance for accidental shifts in
resting finger positions, decision diamond 656 requires both
that all relevant fingers are moving at significant speed and
that they are moving about the same speed. This is checked
either by thresholding the geometric mean of the finger
speeds or by thresholding the fastest finger’s speed and veri-
fying that the slowest finger’s speed is at least a minimum
fraction of the fastest finger’s speed. Once a chord slide is
initiated, step 660 disables recognition of key or chord taps by
the hand at least until either the touching fingers or the synced
subset lifts off.

[0264] Oncethe slide initiates, the chord motion recognizer
could simply begin sending raw component velocities paired
with the selected combination of finger identities to the host.
However, in the interest of backward compatibility with the
mouse and key event formats of conventional input devices,
the motion event generation steps in FIG. 40B convert motion
in any of the extracted degrees of freedom into standard
mouse and key command events which depend on the identity
of the selected chord. To support such motion conversion,
step 658 finds a chord activity structure in a lookup table
using a bitfield of the identities of either the touching fingers
or the fingers in the synchronized, subset. Different finger
identity combinations can refer to the same chord activity
structure. In the preferred embodiment, all finger combina-
tions with the same number of non-thumb fingertips refer to
the same chord activity structure, so slide chord activities are
distinguished by whether the thumb is touching and how

Jun. 5, 2008

many non-thumb fingers are touching. Basing chord action on
the number of fingertips rather than their combination still
provides up to seven chords per hand yet makes chords easier
for the user to memorize and perform. The user has the free-
dom to choose and vary which fingertips are used in chords
requiring only one; two or three fingertips. Given this free-
dom, users naturally tend to pick combinations in which all
touching fingertips are adjacent rather than combinations in
which a finger such as the ring finger is lifted but the sur-
rounding fingers such as the middle and pinky must touch.
One chord typing study found that users can tap these finger
chords in which all pressed fingertips are adjacent twice as
fast as other chords.

[0265] The events in each chord activity structure are orga-
nized into slices. Each slice contains events to be generated in
response to motion in a particular range of speeds and direc-
tions within the extracted degrees of freedom. For example, a
mouse cursor slice could be allocated any translational speed
and direction. However, text cursor manipulation requires
four slices, one for each arrow key, and each arrow’s slice
integrates motion in a narrow direction range of translation.
Each slice can also include motion sensitivity and so-called
cursor acceleration parameters for each degree of freedom.
These will be used to discretize motion into the units such as
arrow key clicks or mouse clicks expected by existing host
computer systems.

[0266] Step 675 of chord motion conversion simply picks
the first slice in the given chord activity structure for process-
ing. Step 676 scales the current values of the extracted veloc-
ity components by the slice’s motion sensitivity and accelera-
tion parameters. Step 677 geometrically projects or clips the
scaled velocity components into the slice’s defined speed and
direction range. For the example mouse cursor slice, this
might only involve clipping the rotation and scaling compo-
nents to zero. But for an arrow key slice, the translation
velocity vector is projected onto the unit vector pointing in the
same direction as the arrow. Step 678 integrates each scaled
and projected component velocity over time in the slice’s
accumulators until decision diamond 680 determines at least
one unit of motion has been accumulated. Step 682 looks up
the slice’s preferred mouse, key, or three-dimensional input
event format, attaches the number of accumulated motion
units to the event; and step 684 dispatches the event to the
outgoing queue of the host communication interface 20. Step
686 subtracts the sent motion events from the accumulators,
and step 688 optionally clears the accumulators of other
slices. If the slice is intended to generate a single key com-
mand per hand motion, decision diamond 689 will determine
that it is a one-shot slice so that step 690 can disable further
event generation from it until a slice with a different direction
intervenes. Ifthe given slice is the last slice, decision diamond
692 returns to step 650 to await the next scan of the sensor
array. Otherwise step 694 continues to integrate and convert
the current motion for other slices.

[0267] Returningto FIG.40A, for some applications it may
be desirable to change the selected chord whenever an addi-
tional finger touches down or one of the fingers in the chord
lifts off. However, in the preferred embodiment, the selected
chord cannot be changed after slide initiation by asynchro-
nous finger touch activity. This gives the user freedom to rest
or lift addition fingers as may be necessary to get the best
precision in a desired degree of freedom. For example, even
though the finger pair chord does not include the thumb, the
thumb can be set down shortly after slide initiation to access



